Exploring Self-star Properties in Cognitive Sensor Networking

Pruet Boonma and Junichi Suzuki
Department of Computer Science
University of Massachusetts, Boston
{pruet, jxs}@cs.umb.edu

Abstract

Wireless sensor networks (WSNs) possess inherent tradeoffs
among conflicting operational objectives such as data yield, data
fidelity and power consumption. In order to address this chal-
lenge, this paper proposes a biologically-inspired framework to
build cognitive WSN applications, which introspectively under-
stand their conflicting objectives, find optimal tradeoffs with given
constraints and autonomously adapt to dynamics of the network.
The proposed framework, MONSOON, models an application as
a decentralized group of software agents. This is analogous to
a bee colony (application) consisting of bees (agents). Agents
collect sensor data on individual nodes and carry the data to
base stations. They perform this data collection functionality
by autonomously sensing their local and surrounding network
conditions and adaptively invoking biological behaviors such as
pheromone emission, reproduction and migration. Each agent has
its own behavior policy, as a gene, which defines how to invoke
its behaviors. MONSOON allows agents to evolve their behavior
policies via genetic operations such as crossover and mutation.
Simulation results show that agents (WSN applications) exhibit the
properties of self-configuration, self-optimization and self-healing
and adapt to various dynamics of the network (e.g., node/link fail-
ures) by satisfying conflicting objectives under given constraints.

1. Introduction

Wireless sensor networks (WSNs) have inherent trade-
offs among conflicting operational objectives such as data
yield, data fidelity and power consumption. For example,
in data collection applications, hop-by-hop recovery is of-
ten applied for packet transmission in order to improve data
yield (the quantity of collected data). However, this can de-
grade data fidelity (the quality of collected data; e.g., data
freshness). For improving data fidelity, sensor nodes may
transmit data to base stations with the shortest paths; how-
ever, data yield can degrade because of traffic congestion
and packet losses on the paths.

In order to address this issue, the authors of the paper en-
vision cognitive WSN applications that introspectively un-
derstand their conflicting objectives, find optimal tradeoffs
under given constraints and autonomously adapt to dynam-
ics of the network such as node/link failures. For making
this vision a reality, this paper proposes a cognitive sensor
networking framework, called MONSOON!, which allows
WSN applications to exhibit the following self-* properties:

'Multiobjective Optimization for a Network of Sensors using an evO-
lutionary algOrithm with coNstraints

o Self-configuration: allows WSN applications to auto-
mate their own configurations and self-organize into
desirable structures and patterns (e.g., routing paths
and duty cycles).

o Self-optimization: allows WSN applications to con-
stantly seek improvement in their performance by
adapting to changing network conditions with minimal
human intervention.

o Self-healing: allows WSN applications to automati-
cally detect and recover from disruptions in the net-
work (e.g., node and link failures).

As an inspiration for the design strategy of MONSOON,
the authors of the paper observe that various biological sys-
tems have developed the mechanisms necessary to realize
the vision of MONSOON. For example, a bee colony self-
organizes to satisfy conflicting objectives simultaneously
for maintaining its well-being [8]. Those objectives include
maximizing the amount of collected honey, maintaining the
temperature in a nest and minimizing the number of dead
drones. If bees focus only on foraging, they fail to ventilate
their nest and remove dead drones. Given this observation,
MONSOON applies key biological mechanisms to imple-
ment cognitive WSN applications.

Figure 1 shows the architecture of MONSOON. The
MONSOON runtime operates atop TinyOS on each node.
It consists of two types of software components: agents
and middleware platforms, which are modeled after bees
and flowers, respectively. Each application is designed as
a decentralized group of agents. This is analogous to a
bee colony (application) consisting of bees (agents). Agents
collect sensor data on platforms (flowers) atop individual
nodes, and carry the data to base stations on a hop-by-hop
basis, in turn, to a backend server (the MONSOON server
in Figure 1), which is modeled after a nest of bees.

Agents perform this data collection functionality by au-
tonomously sensing their local and surrounding network
conditions and adaptively invoking biological behaviors
such as pheromone emission, replication, reproduction, mi-
gration and death. A middleware platform runs on each
node, and hosts one or more agents (Figure 1). It provides
a series of runtime services that agents use to perform their
functionalities and behaviors.

MONSOON implements a constraint-based evolutionary
adaptation mechanism for agents. Each agent has its own

behavior policy, as a gene, which defines when to and how
to invoke its behaviors. MONSOON allows agents to evolve
their behavior policies via genetic operations (mutation and
crossover) and simultaneously adapt them to conflicting ob-
jectives with associated constraints. A constraint is defined
as an upper or lower bound for an objective. For example,
a tolerable (lower) bound may be defined for data fidelity.
Currently, MONSOON considers six objectives related to
data yield, data fidelity and power consumption.

(Sensor Node h \

MONSOON Runtime

=)

Base Station Mesh
Network

J
Figure 1. The Architecture of MONSOON

2. The MONSOON Runtime

MONSOON is currently designed to implement data col-
lection applications. An agent is initially deployed with a
randomly-generated behavior policy on each node. Each
agent collects sensor data on a node periodically (i.e., at
each duty cycle) and carry the data toward a base station.

2.1. Agent Behaviors

Each agent implements seven behaviors and performs
them in the following sequence at each duty cycle.

Step 1: Energy gain. Each agent collects sensor data
and gain energy. In MONSOON, the concept of energy does
not represent the amount of physical battery in a node. It is
a logical concept that impacts agent behaviors. Each agent
updates its energy level with a constant energy intake (Er):

E®)=E(t-1)+Ep (1

E(t) and E(¢— 1) denote the energy levels in the current
and previous duty cycles.

Step 2: Energy expenditure and death. Each agent
consumes a constant amount of energy to use comput-
ing/networking resources available on a node (e.g., CPU
and radio transmitter). It also expends energy to invoke its
behaviors. The energy costs to invoke behaviors are con-
stant for all agents. An agent dies due to energy starvation
when it cannot balance its energy gain and expenditure. The
death behavior is intended to eliminate the agents that have
ineffective behavior policies. For example, an agent would
die before arriving at a base station if it follows a too long
migration path. When an agent dies, the local platform re-
moves the agent and releases all resources allocated to it>.

2If all agents are dying on a node at the same time, a randomly selected
agent will survive. At least one agent runs on each node.

Internet
or
Cellular

Step 3: Replication. Each agent makes a copy of itself in
each duty cycle. A replicated (child) agent is placed on the
node that its parent resides on, and it inherits the parent’s
behavior policy (gene). A replicating (parent) agent splits
its energy units to halves (%), gives a half to its child
agent, and keeps the other half. Eg denotes the energy cost
for an agent to perform the replication behavior. A child
agent contains the sensor data that its parent collected, and
carries it to a base station on a hop by hop basis.

Step 4: Swarming. Agents may swarm (or merge) with
others at intermediate nodes on their ways to base stations.
On each intermediate node, each agent decides whether it
migrates to a next-hop node or waits for other agents to ar-
rive at the current node and swarm with them. This decision
is made based on the migration probability (p,,). If an agent
meets other agents during a waiting period, it merges with
them and contains the sensor data they carry. It also uses the
behavioral policy of the best one in the aggregating agents
in terms of operational objectives. (See Section 3. on how
to find the “best” agent.) The swarming behavior is intended
to save power consumption by reducing the number of data
transmissions. If the size of data an agent carries exceeds
the maximum size of a packet, the agent does not consider
the swarming behavior.

Step 5: Pheromone sensing and migration. On each in-
termediate node toward a base station, each agent chooses a
migration destination node (next-hop node) by sensing three
types of pheromones available on the local node: base sta-
tion, migration and alert pheromones.

Each base station periodically propagates a base station
pheromone to individual nodes in the network. Their con-
centration decays on a hop-by-hop basis. Using base station
pheromones, agents can sense where base stations exist ap-
proximately, and move toward them by climbing a concen-
tration gradient of base station pheromones.

Agents emit migration pheromones on their local nodes
when they migrate to neighboring nodes. Each migration
pheromone references the destination node an agent has mi-
grated to. Agents also emit alert pheromones when they fail
migrations within a timeout period. Migration failures can
occur because of node failures due to depleted battery and
physical damages as well as link failures due to interfer-
ence and congestion. Each alert pheromone references the
node that an agent could not migrate to. Each of migration
and alert pheromones has its own concentration. The con-
centration decays by half at each duty cycle. A pheromone
disapears when its concentration becomes zero.

Each agent examines Equation 2 to determine which
next-hop node it migrates to.

P, —P;.

max min

3
30 p-P

WSj: § wy 1,] Tmin (2)
t=1

An agent calculates this weighted sum (WS ;) for each

